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1. Introduction 

Our main aim in this pacer is to show that certain problems (131, [ 111, [ 141) about 
the integral dimension subgroups can be translated into equivalent problems about 
the Schur multiplicator H2(G, T), where T denotes the additive group of rationals 
mod 1 regarded as a trivial module over the group G. Let { PnH2(G, T)} be the 
filtration of H2(G, T) as defined in [ 11, p. 641. We prove that 

(i) The integral dimension series of every nilpotent group terminates with 
identity in a finite number of steps if and only if, for every nilpotent group G, 
PnH2(G, T)= H2(G, T) for some nz 1. 

(ii) The lower central series and the integral dimension series have equal 
intersections for every group if and only if, for every nilpotent p-group G without 
elements of infinite p-height, U, PnH2(G, Tp) = H2(G, T,), where Tp is the p- 

torsion subgroup of T. We also obtain some positive results about the filtration 
{PnH2(G, T)}. We prove that if G is a nilpotent group which is either finitely 
generated or torsion-free, then P,,H2(G, T) = H2(G, T) for some nr 1. For 
arbitrary groups we show that there are constants dr , d2, . . . , d,, ,,.- such that 
d,, H2(G, T) s P,,H’(G, T) for every nilpotent group G of class a. 

2. Integral dimension series and a filtration of Schur multiplicator 

Let G be a group. We denote by d(G) the augmentation ideal of the integral 
group ring ZG. Let G = D,(G) 2 D?(G) 2 l -- 2 D,(G) L l -- be the integral dimension 
series of G, D,,(G) = Gn(ll +d”(G)). There is a well-known correspondence (see 
[4, Chapter VI, #lo]) between the elements of the cohomology group H2(G, M) 
and the equivalence classes of central extensions 1 --M--+~-+G-+ 1 of M by G, 
when M is a trivial G-module. If M is divisible abelian, then we can easily identify 
by [lo, Theorem 2.11 the central extensions corresponding to the elements of 
P,, H’(G, M). 

. Led G be a group, A LZ dEsi&.&~ abdim gro regarded as a trivial 
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G-module, c E H'(G, A) and 1 --+A--+l7-+G --+ 1 a central extension corresponding 

to r. Then (E P,H’(G, A) if atld only if 

An(l +A”+‘(l7>+A(Z7)3(A))=(l). 

The term A( occurring in Proposition 2.1 can be dropped when I7 is a 

torsion group. For, in this case, A (LT)A(A) I A”(l7) for all n I 1 (see [ 11, Theorem 

2.3, p. 971). 

Thus we have 

2.2. Proposition. Let G be a torsion group, A Q torsion divisible abeiian group 
t ?garded .s a trivial G-module, $ E H’(G, A) and I-+ A -+IT+ G + 1 a central exten- 

sion corresponding to [. Then [ E P,, H’(G, A) if and on@ if A (7 D, + ,(LT) = (1). 

‘The following result which is again a consequence of 

to apply. 

2-3. Lemma. Let I7 be a group, .A a central subgroup 
group such that for ever! element 1 f .Y E A there exists 
with _f (x) f 0. Then 

[lo, Theorem 2. l] is handy 

of U, B a divisible abelian 
a homomorphism f : A -+ B 

(i) .4 n(i +A’!+ ‘(lT)+A(.~)A(4))=(1) ifP,,H’(IT/A,B)=H’(WA,B) 

(ii) An =(I) ifUP,,H’(I;I/A,B)=H+T/A,B). 
n 

We denote the centre of a group G by i(G) and set 

I,(G)=Gn(l +A”(G)+A(G)A(~(G))) for nzl. 

2.4. kernma. Every torsion nilpotent group G cnn be embedded in a nilgotent 

yorrp P such that 1 

bi) l,tGk D,,(G*) for ail nz 1, and 
(ii) ckss of S=cIass of G*. 

Proof. Let G be a torsion nilpotent group and A any divisible abelian group con- 

taining _‘(G). Form the central product 

where @ : <(G)+A is a monom, nrphism. Then class of G = class of G* and, since 
X(G $4(G) 5 A(A A”(G*), we have I,(G) 5 D,,(G*). 

The ,follo wing statements are quivalel: - 

nilpotent group G, the,-cp exists QM integer n 1 1 such that 
l!!,,(5) = (!). 
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(ii) For every nilpotent group G, there exists an integer nz 1 such that 
P,,H’(G, T) = H2(G, T). 

Proof. If (i) holds, then there exists a function f(c) such that Q(,)(G) = (1) for 
every nilpotent group of class SC. By Lemma 2.4 and standard reductions we must 
also have 1&)(G) = (1) for all such groups. 

Let G be a nilpotent group of class c. If &z H2(G, T) and 1 +T-*n+G -+l is a 
corresponding central extension, then n is nilpotenl. of class ,CC+ 1. Thsrefore, 
If(,,,,(n)=(l) and, by Proposition 2.1, we have PfcC+1,_2H2(G,T)=H2(G,T). 

The converse follows from Lemma 2.3 and induction on the class of G. 

Let y,(G) denote the nth term in the lower central series of a group G. Write 

y,(G) = n r,(G) and D,(G) = n D,(G). 
r n 

2.6. Theorem. Tht! following statements are equivalent: 
(i) For every group G,&,(G)= y,(G). 
(ii) For every nilpotent p-group G without elements of infinite p-height, 

u, P,,H’W, Tp) = H2K& Tp)- 

Proof. Suppose (i) holds. Let G be a nilpotent p-group, <E H2(G, Tp) and I-+ 

Tp -+-+G --+ 1 a central extension corresponding to r. Then n is a nilpotent 
p-group and Q(n) = (1). Since Tp satisfies the minimum condition on subgroups, 
it follows that %nD,+ !(n) = (1) for some nr 1. Therefore, by Proposition 2.2, 
<E P,,_ 1 H’(G, Tp) and so (ii) holds. 

Conversely suppose (ii) holds. Let G be a nilpotent p-group. Let G(p) be the 
subgroup consisting of elements of infinite p-height in G. Then G(p) s C(G) ([2], 
[6]) and D,(G) f G(p) (see [l 1, Proposition 1.3, p. 951). As G/G(p) is a nilpotent 
p-group without elements of infinite p-height, 

Le&mma 2.3, therefore, implies that 

GbOn 1+ r)(d”(W+4W(G(p)) ( =W. 
n > 

Hence D,(G) = (1) for every nilpotent p-group G and we have (i) by [3, Corollary 
A2]. 

Let J,,(G) = 0, I,(G). We can in fact easily prove the following (we omit the 

details): 

.7. 8xk The following statements are equivalent: 
(i) For every group G, I,(G) = y,(G). 
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(ii) For every nrlpotenl group G ant’ prime p 

u P,H2(G, Tp) = HZ@, Tp). 
n 

We now give some positive results about the filtration { P,H2(G, T)}. 

2.8. Theorem. Let G be a nilpotent group which is either finitely genetated ot 
rorsionYfree. Then there exists an integer n z f such that 

P, H2(G, T) = H2(G, T). 

Proof. Case I: G finitely generated. Let 1 + R-+ FdG --* 1 be a free presentation of 
G with F free of finite rank. Let (F, R] be the subgroup generated by all elements 
of the type f-k’fr, where f E F, rE R. Write F= F/[F, R] and a = R/[F, R]. Since 
A(F) is a polycentral ideal of Z& it satisfies the weak Artin-Rees property (see (13, 
Chapter XI, Theorem 2.81). Therefore, there exists an n such that 

A” + ‘(,F) n A(!&@s A (a)A(F). 

For this n it follows that 

Rn(l +A”+2(~)+A(~)A(~))=(I). 

Hence, by [ 12, Corollary 3.21, 

P,, H+,G, T) = H’(G, T). 

Czse II: G rorsion-free. Let G be a torsion-free nilpotent group of class c. Let 
I-+ T-+n-+G -+ 1 be a central extension. It can be deduced easily from [3, Lemma 
4.11 that 

A”‘(R)nZ(l?)A(T)rA(l7)A(T) where m=c2+4c+3. 

Therefore, 

Tn(l +il”‘(l7)+A(l7)A(T))-(I) 

and ir follows from Proposition 2.1 that 

p,l, 2 M’(G, T) = H’(G, T). 

Every nilpotent p-group G has the property that D,(G)=,,,(G) for k&q+ 1 

([ 171, see also [7]). From this result and Proposition 2.2 we can deduce 

ewem. !‘f G is a nilpotenr p-grordp of chs c<p, then P,.H’(G, T) = 
liqc, ?-). 

With the help of [3, Lemma 6.21 we can prove 
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2.10. Tbeorem. Let G be a torsion ni@otent group, K a normai subgroup of G sup- 
pjemented by a finite p-subgroup and s24pme that 

for every 

up n Is 

In view of 19, Th ~4 X6] we have 

2.11. Corollary. L 
of finite index. Then 

a n~~p~tent p-group having an abelian normal subgroup 

&H-,(6;, TJ = ff ‘(G, T,) for every prime q. 
4 

Sjogren [ 13) has given constants cl, c2,. . . , c,, . . . such that, for every group G, 
D~(G)I v,(G) for all n,> 1. We find that this result is equivalent to an analogous 
property of the filtration (P,H*(G, T)]. 

2.12. Tbeorem. Thp following statements are equivalent: 
(i) There exist constants cl, c2, . . . , c,,, . . . such that for every group G, 

D:(G)= y,,(G) for aN nz 1. 
(ii) There exist constants d, , d2, . . . , d,, , . . . such that, for every nilpotent group G 

of class rn, d,H*(G, T)s P,,H*(G, T). 

Proof. (i)* (ii). Using Lemma 2.4 it can be shown that if (i) holds, then, for every 
group G, I,,(G)% y,(G) for all n 2 1. 

Let 6 be a nilpotent group of class sn, &H*(G, T) and l=+T--W+G-,l a 
central extension corresponding to 5. Let 6 : T-+ T be the homomorphism 
8(t) = c,, 2 t. Since I7 is a nilpotent group of class sn + I,$ vanishes on Tnl, + z(n) 
and therefore on Tn(l +A*~*(KW+-A(lld(T)). L :t 

be the homomorphism tW t - 1 -I- A I’ ’ ‘(f7) + A(l7)A( T). Since T is divisible abelian 
and vanishes on Ker cy, there exists a homomorphism 

such that 6= p 0 (r. Let P: H2(G, PH2(G, T) be the homomorp 
8. It follows from [ 1 eorem 2.11 that 8*(r) E P,J12(G, T). However, 
S*(<)=C,,+,& Hence c,+? H2(GT 7’ I YS P,H’(G, T). We may thus take d, = c,, 2 for 
all n 2 1. 

(iii 3 (i). Suppose there exist constants dl ,d2, . . . , d,, . . . as in (ii). We assert that 
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the constants cl, c2, . . . , c,, . . . defined inductively by 

c-1 = 1, c2=1, C,,] =&cl,_, for nr2 

have the property that, for every group G, Q(G)5 y,(G) for all n= 1. It is not 
hard to see that it is enough to establish the assertion for prime power groups only 
(see [8, Section 31). We proceed by induction on n. The assertion holds trivially for 
n = 1,2. Suppose it holds for all 111 with 1 dm 5 n. Let G be a prime power group. 
To show that 

we may assume that yn+ I(G) = (1). Let XE I,,+ I(G). Then, by induction xc” E 
y,JG) 5 c(G). If xC”“I” i # 1, then Ne can define a homomorphism /?: j(G)+ T such 
that P(x“~~~ I ) f 0. Let CT = & _ lb and let cw*, j?* be the homomorphisms 

k?‘(GK(G), c(G))-•iY2(G/c(G), T) _ 

induced by cr,#? respectively. Let { be the element of H”(G/c(G), j(G)) which cor- 
responds to the central extension 

Then cw “(0 = d,, _ I P*(r) e dR _ I H’(G/[(G), T) s P,, _ 1 H’(G/<(G), T). Therefore, 
by [ 10, Theorem 2. I ] CT can be extended to a map @ : G -+ T whose linear extension 
to ZG vanishes on A”” (G) + A(G)A(c(G)). But then 

a contradiction. Hence we I;Iust have .Pdn I = 1 and the induction is complete. 

2.13. Corollary. For the constants cl, c2, . . . , c,,, . . . defined by Sjogren, 

It rr .H2(G, T)<P,,H’(G, T) t & 

for every nilpotent group G of ckzss rn. 

2.14. Remarks. (i) Let G be a p-group of class 3. If p f 2, then the integral dimen- 
sion series and the lower central series of G coincide [8]. On the other hand, there 
are 2-groups of class 3 with D,(G)#(l) ([15], [Ml, [191). For further insight into 
dimension subg,oups it will, therefore, be of interest to first know whether the 
dimension series of 2-groups of class 3 have bounded lengths. 

(ii) For positive results about the statements in Theorems 2.5 and 2.6 we ret’er the 
reader to [l], [2], [3], [5], [M], [Ifi], [20] and [21]. 
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